Skip to main content

More for You

How does Messi keep the ball close to himself

The science of how Messi keeps the ball close to himself photo credit: ZaleDesigns Messi is a magician with the ball at his feet. He's in my opinion the best player in the sense that he can control the ball so well, runs so fast with the ball & changes the direction at full speed like it's a walk in the park. For starters he started playing very early (at 3) which is crucial if you want to be a good player. In that aspect, he's God gifted as he had dribble skills which is genetic in my opinion. Height He is short which means a low center of gravity so it's difficult to push him off the ball. That's why we see that anyone rarely can topple him down, instead players much larger than him lose possession to him. So his short height suits his style of play & is a blessing in disguise. Change of pace Messi changes his pace really well. He starts slow and runs directly at the defender which means the defender has to stop & focus on him. When he reac...

what is gravity

Physics - Gravitation

Introduction

  • All celestial bodies those found in the universe attract each other and the force of attraction among these bodies is called as the gravitational force.

Gravitation

Universal Law of Gravitation

  • Every object in the universe has the property to attract every other object with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them (see the image given below).

Gravitational Force
  • F = force of attraction between two the objects ‘A’ & ‘B’

  • M = mass of ‘A’

  • m = mass of ‘B’

  • d2 = the square of the distance between ‘A’ & ‘B’

  • G = is the constant of proportionality and is known as the universal gravitation constant.

  • The SI unit of G is N m2 kg–2. It is obtained by substituting the units of force, distance and mass (as given in the following equation −

$$G = \frac{Fd^2}{M \times m}$$

  • Henry Cavendish had calculated the value of ‘G’ as 6.673 × 10–11 N m2 kg–2.

  • Henry Cavendish had used a sensitive balance to find the value of ‘G.’

Significance of Universal Law of Gravitation

  • Following are the salient significance of the Universal Law of Gravitation −

    • It explains the force that binds all objects (including human beings) to the earth

    • It describes the motion of the moon around the earth

    • It explains the motion of planets around the Sun

    • It clarifies the tides due to the moon and the Sun

Free Fall

  • Whenever an object falls towards the earth, it involves an acceleration; this acceleration is produces due to the earth’s gravitational force.

Free Fall
  • The acceleration, produces due to the earth’s gravitational force, is known as the acceleration due to the gravitational force of the earth (or acceleration due to gravity).

  • The acceleration produces due to the gravitational force is denoted by g.

  • As the radius of the earth increases towards the equator (from the poles) the value of ‘g’becomes greater at the poles than at the equator.

The Value of g

  • Value of g is calculated as −

$$g = G\frac{M}{R^2}$$

  • G = universal gravitational constant, which is = 6.7 × 10–11 N m2 kg-2

  • M = mass of the earth, which is = 6 × 1024kg

  • R = radius of the earth, which is = 6.4 × 106m

  • So,

$$g = \frac{6.7 \: \times 10^{-11} \: Nm^2 \: kg^{-2} \: \times \: 6 \: \times 10^{24} \: kg}{(6.4 \: \times 10^6 \: m)^2}$$

$=9.8 \: m \: s^{-2}$

  • So, the value of acceleration due to gravity of the earth (g) is 9.8 m s-2.

Comments

  1. Does Galileo galiliG has a large contribution to Gravity today

    ReplyDelete

Post a Comment